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Abstract
The energy spectrum fine structure of triplet two-electron states in nanostructures is investigated
theoretically. Spin–orbit interaction-induced terms in the effective Hamiltonian of the
electron–electron interaction are derived for zinc blende lattice semiconductor systems:
quantum wells and quantum dots. The effects of bulk and structural inversion asymmetry are
taken into account. Simple analytical expressions describing the splittings of the two-electron
states localized in a single quantum dot and in a lateral double quantum dot are derived. The
spin degeneracy of triplet states is shown to be completely lifted by the spin–orbit interaction.
An interplay of the conduction band spin splitting and the spin–orbit terms in the
electron–electron interaction is discussed. The emission spectra of hot trions and of doubly
charged excitons are calculated and are shown to reveal the fine structure of two-electron states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiconductor quantum dots (QDs), also known as artificial
atoms, demonstrate unique spin-dependent properties and
have a strong potential for spintronics [1]. The fine
structure of optical emission spectra of QDs provides detailed
information on the charge carriers’ energy spectrum and their
interactions [2].

The fine structure of neutral QD energy spectra and, hence,
their luminescence spectra are determined by the exchange
interaction between an electron and a hole forming a zero-
dimensional exciton [2]. The situation is different in the case
of doped QDs: for instance, in n-type singly charged QDs
the emission is dominated by X− trions consisting of two
electrons and a hole, and in doubly charged QDs the emission
involves the transition from the state with three electrons and
one hole (X2−) into the state with two electrons [3–6]. On these
occasions, the fine structure of optical spectra is controlled also
by the exchange interaction between electrons.

It is well known that two-electron states are split into spin
singlet and triplet states by the exchange Coulomb interaction.
In the absence of the spin–orbit interaction, the triplet states are
degenerate. It was demonstrated recently that the spin–orbit
contribution to the electron–electron interaction (spin–orbit
exchange interaction) splits a two-electron triplet state into
three sublevels, one of which corresponds to zero projection
of the total spin on the growth axis and two others correspond

to the linear combinations of the states with the total spin
projections being ±1, similar to those of localized excitons [7].

Here we extend the theory developed in [7] to allow
for the full microscopic symmetry of real QDs made of zinc
blende lattice semiconductors. The effects of the bulk inversion
asymmetry caused by the absence of an inversion center in
the point symmetry group of a zinc blende lattice and of the
structural inversion asymmetry on the fine structure of two-
electron triplet states are analyzed. The developed theory
is applied to calculate the two-electron states and emission
spectra of a hot trion and X2− complex in single and double
QDs.

2. Model

In what follows we consider quantum discs (quantum well
QDs) and lateral double QDs grown from zinc blende lattice
direct-gap materials. It is convenient to (i) obtain the spin–
orbit contributions to an effective Hamiltonian of the electron–
electron interaction in a quantum well and (ii) calculate the fine
structure of the two-electron states localized in the quantum
well plane using the derived Hamiltonian.

The schematic band structure of the direct band zinc
blende lattice semiconductor is depicted in figure 1(a). The
spin–orbit interaction for the conduction band (�c

6) electrons
is largely determined by the k · p admixture of the valence
band states (�v

8 , �v
7). The effects due to the lack of an
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Figure 1. (a) Schematic illustration of the band structure of a direct band zinc blende lattice-based semiconductor. (b) Schematic illustration
of the band structure of a uniaxially deformed zinc blende lattice-based semiconductor. Splittings are not shown to scale.

inversion center in the point symmetry group of the bulk
material disregarded in [7] can be taken into account by taking
into consideration the remote conduction bands �c

8 and �c
7.

Under the assumption that the gap E ′
g between the �c

6 and
�c

8 exceeds by far the bandgap Eg (between �c
6 and �v

8) and
that the spin–orbit splitting �′ of the �c

8, �c
7 bands is much

smaller as compared with E ′
g, the band structure can be treated

within the framework of the extended eight-band Kane model
by including terms quadratic in the wavevector into the off-
diagonal matrix elements characterizing the k ·p interaction of
the valence band states with the conduction band states [8].

The free-electron wavefunction in a quantum well grown
along the z ‖ [001] axis can be represented as (cf [7])

�s,k(ρ, z) = eikρ[Sr+iRr ·(Aκ̂K−iBσ̂×κ̂K)]ϕ(z)|χs〉. (1)

Here r = (ρ, z) is the electron position vector, ϕ(z) is the
smooth envelope describing its size quantization along the z
axis, σ̂ is the electron spin operator, Sr and Rr = (Xv

r,Yv
r,Zv

r)

are s-type and p-type Bloch functions of the conduction and
valence bands, respectively, taken at the � point, |χs〉 is
a spinor, A = P(3Eg + 2�)/[3Eg(Eg + �)] and B =
−P�/[3Eg(Eg +�)],� is the gap �v

8–�v
7 and P is the Kane

parameter. Equation (1) is valid provided that the electron
energy referred to the conduction band bottom is much smaller
compared to Eg and �.

The vector κ̂K describing the admixture of the valence
bands has the following Cartesian components in the cubic
axes x ‖ [100] and y ‖ [010]:

κ̂K,i = K̂i − iβ K̂i+1 K̂i+2, (2)

where K̂ = (k,−i∂/∂z) is the wavevector of the electron, a
cyclic rule is applied for the subscripts (i + 3 = i ) and the
constant β can be related to the bulk Dresselhaus parameter

γc describing cubic in k conduction band spin splitting as
β = γc/2B P [8, 9]. In [7] the quadratic in the wavevector
contributions to equation (2) were disregarded. These terms,
being even in the wavevector components, arise in the systems
with bulk inversion asymmetry only, and they are caused by
the mixing between �c

7 and �c
8 bands, and �v

7 and �v
8 bands,

see figure 1.
The matrix elements of the effective electron–electron

interaction Hamiltonian taken between the states (ks,k′s′) and
(ps1,p

′s′
1), M(ks,k′s′ → ps1,p

′s′
1), are calculated following

the procedure outlined in [7]. They can be efficiently expressed
in terms of a function μ̂(z,k → p, σ̂ ) which is

μ̂(z,k → p, σ̂ ) = ϕ2(z)+ iξ{σ̂z[p × k]ϕ2(z)

− i[σ̂ × (p + k)]zϕ
′(z)ϕ(z)

+ iβ[σ̂x(px + kx)− σ̂y(py + ky)][ϕ′(z)]2

− iβ[σ̂x pyky(px + kx)− σ̂y pxkx(py + ky)]ϕ2(z)}, (3)

where the parameter ξ ,

ξ = 2AB + B2 = − P2

3

�(2Eg +�)

E2
g(Eg +�)2

, (4)

characterizes the strength of the spin–orbit interaction. Its
values for some semiconductors are given in table 1. Here
we neglected the corrections to the first three terms in
equation (3) caused by the electron energy spectrum non-
parabolicity. The terms proportional to β are caused by the
bulk inversion asymmetry and arise from the quadratic in
wavevector contributions to κ̂k.

Finally

M(ks,k′s′ → ps1,p
′s′

1) = δk+k′,p+p′

×
∫

dz1 dz2V (p − k, z1 − z2)〈χs1χs ′
1
|μ̂

× (z1,k → p, σ̂
(1)
)μ̂(z2,k

′ → p′, σ̂ (2))|χsχs ′ 〉. (5)

2
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Table 1. Spin–orbit interaction strength ξ [10].

Material ξ (Å
2
)

GaAs 5
InAs 100
InSb 500
CdSe 3
CdTe 5
ZnTe 2

Here V (q, z) = −1
∫

V (r)e−iqρdρ, where V (r) = e2/(�r)
is the Coulomb potential, � is the static dielectric constant,
 is the normalization area, q = p − k is the transferred
wavevector, and σ̂

(1) and σ̂
(2) are the spin operators of the first

and second electrons (acting on spinors |χs〉, |χs1〉 and on |χs ′ 〉,
|χs ′

1
〉, respectively). Note that the matrix element equation (5)

is derived for not (anti)symmetrized wavefunctions, cf [11].
One can represent the matrix element equation (5) as

a sum of spin–orbit independent contributions, M (0), the
contributions linear in spin operators σ̂

(1) and σ̂
(2), M (1), and

the quadratic in spin operator terms, M (2).
In what follows we consider a simple model of the

quantum well of width d with infinite barriers. The electron
envelope function for the lowest size-quantization subband is
taken in the form

ϕ(z) =
√

2

d

[
cos

(
πz

d

)
+ α sin

(
2πz

d

)]
,

−d/2 � z � d/2. (6)

The possible quantum well heteropotential asymmetry
(i.e. structural inversion asymmetry) is taken into account by
the second term in the square brackets; it is assumed that
α � 1.

The spin–orbit independent contribution is given by the
Fourier transform of the quasi-two-dimensional Coulomb
potential [12]:

M (0)(ks,k′s′ → ps1,p
′s′

1)=
2πe2

�q
δk+k′,p+p′δs,s1δs ′,s ′

1
F00

22 (q),

(7)
with F00

22 (q) = 1 at qd � 1 (the definition of the form factors
Fkl

i j is given in [7]).
The linear in spin operators’ contributions are responsible

for the asymmetric scattering. They are proportional to ξ and
are

M (1)(ks,k′s′ → ps1,p
′s′

1) = ξ
2πe2

�q
δk+k′,p+p′

× 〈χs1χs ′
1
|[σ̂ (1) × (p + k)]z F10

12 (q)

+ [σ̂ (2) × (p′ + k′)]z F01
21 (q)

− β[σ̂ (1)x (px + kx)− σ̂ (1)y (py + ky)]F20
02 (q)

− β[σ̂ (2)x (p′
x + k ′

x)− σ̂ (2)y (p′
y + k ′

y)]F02
20 (q)

+ iσ̂ (1)z [p × k]z F00
22 (q)+ iσ̂ (2)z [p′ × k′]z F00

22 (q)|χsχs ′ 〉.
(8)

Here we retained only linear and quadratic in wavevectors
terms. The second and third lines in equation (8) describe

Rashba-like contributions to electron–electron scattering
similar to the structural inversion asymmetry terms in electron
impurity or electron phonon scattering [13, 14]. However, the
form factors F10

12 = F01
21 ≡ 0 in our model and structural

inversion asymmetry terms vanish1. In equation (8) terms ∝β
describe bulk inversion asymmetry effects, these contributions
having the form similar to the Dresselhaus Hamiltonian [13].
The corresponding form factors are F20

02 (q) = F02
20 (q) =

π2/d2 at qd � 1. Finally, the last line describes Mott
(skew) scattering. These linear in spin terms can cause the spin
currents generation due to electron–electron interaction [15].

The quadratic in spin operator terms describe spin–spin
interaction and can be written as

M (2)(ks,k′s′ → ps1,p
′s′

1) = ξ 2 2πe2

�q
δk+k′,p+p′

× 〈χs1χs ′
1
|{[σ̂ (1) × (p + k)]z[σ̂ (2) × (p′ + k′)]z F11

11 (q)

+ β2[σ̂ (1)x (px + kx)− σ̂ (1)y (py + ky)]
× [σ̂ (2)x (p′

x + k ′
x)− σ̂ (2)y (p′

y + k ′
y)]F22

00 (q)

− β[σ̂ (1)x (px + kx)− σ̂ (1)y (py + ky)]
× [σ̂ (2) × (p′ + k′)]z F21

01 (q)

− β[σ̂ (1) × (p + k)]z[σ̂ (2)x (p′
x + k ′

x)

− σ̂ (2)y (p′
y + k ′

y)]F12
10 (q)− ([p × k]σ̂ (1))

× ([p′ × k′]σ̂ (2))F00
22 (q)}|χsχs ′ 〉. (9)

Here we disregarded the terms with odd powers of the
wavevectors and the terms with powers of the wavevectors
higher than 4: odd terms do not result in a two-electron state
fine structure, and the higher-order terms do not change the
results qualitatively. The terms in the first and last lines of
equation (9) were derived in [7], the form factor F11

11 (q) =
3q/(4d). The allowance for the bulk inversion asymmetry
results in new terms proportional to β and β2. The form
factor at the β2 terms is F22

00 (q) = π4/d4. Note that
the terms linear in β arise due to an interplay of bulk and
structural inversion asymmetry, the corresponding form factors
F12

10 (q) = F21
01 (q) = −128αq/(15d2). These form factors are

non-zero in asymmetric quantum wells only.

2.1. Allowance for the heavy–light-hole splitting

So far, we assumed that the valence band �v
8 states are

degenerate at k = 0. The deformation of a cubic
semiconductor along the z axis lifts this degeneracy, see
figure 1(b). In quantum wells the size quantization removes the
degeneracy of the states with the total momentum projection
±3/2 and ±1/2 on the growth axis. A similar model can be
applied to a certain extent to wurtzite semiconductors, with z
being the wurtzite axis [16].

In order to analyze the effect of the valence band splitting
on the spin–orbit contributions to the electron–electron
interaction Hamiltonian we disregard the bulk inversion

1 These terms can be interpreted as the Rashba effect for a given electron
caused by the other one. In our model they vanish because the total z
component of the electric field induced by some charge distribution acting on
the same charge distribution is zero [26].
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asymmetry (i.e. put β = 0). We denote as Eg the distance
between the �c

6 band and a light-hole band (z component of the
hole angular momentum being ±1/2) and as Ẽg the distance
between �c

6 band and a heavy-hole band (z-component of
the angular momentum being ±3/2). Let � be the splitting
between the light-hole band and the spin–orbit split-off band
�v

7 , see figure 1(b). We assume that the heavy–light-hole
splitting Ẽg − Eg is small as compared with �. Under this
assumption function μ̂ in equation (5) takes the form

μ̂(z,k → p, σ̂ ) = ϕ2(z)+ i(ξ + ξ̃ )σ̂z[p × k]zϕ
2(z)

+ ξ [σ̂ × (p + k)]zϕ
′(z)ϕ(z), (10)

where ξ is given by equation (4) (with the notations above) and
ξ̃ = −P2(E2

g − Ẽ2
g)/(2E2

g Ẽ2
g). The splitting of the hole states

results in the change of the coefficient at the term proportional
to σ̂z .

2.2. Short-range electron–electron interaction

The method developed in [7] and extended here allows one to
determine the long-range contributions to the electron–electron
interaction which are caused by the Fourier components of
the Coulomb potential with the transferred wavevector much
smaller as compared with the inverse lattice constant. Within
the framework of the effective mass method other Fourier
components of the Coulomb potential V (r) form a short-range
electron–electron interaction:

Hshort(r, r′) = γi j σ̂
(1)
i σ̂

(2)
j δ(r − r′), (11)

where the summation over the repeated Cartesian subscripts
i, j = x, y, z is assumed. Here the spin-independent
contributions are ignored and the non-zero components of
the tensor γi j are determined by the point symmetry of the
considered system.

In bulk cubic semiconductors the tensor γ reduces
to the scalar and the short-range interaction equation (11)
simply adds to the Coulomb exchange interaction caused
by the (anti)symmetry of the wavefunctions and, hence,
the short-range contribution can be disregarded. In bulk
deformed semiconductors and in wurtzite systems there are
two independent components of tensor γ : γzz and γ⊥ ≡ γxx =
γyy.

The effective short-range interaction Hamiltonian in low-
dimensional systems—quantum wells, wires and QDs—can
be obtained by the averaging of equation (11) with the size-
quantization wavefunctions of interacting electrons. It is worth
noting that the additional terms may arise due to the interfaces
of the low-dimensional systems similar to the case of an
exciton localized in type II superlattices [17]. Indeed, if a
pair of electrons is localized in the vicinity of the interface,
even in the case where its envelope function is isotropic, its
microscopic wavefunction experiences the C2v point symmetry
of an ideal interface. Hence, the corresponding terms
should appear in the effective electron–electron interaction
Hamiltonian. Evaluation of the tensor γi j and the interface
contributions requires a fully microscopic calculation.

3. Two-electron triplet state fine structure

Here we apply the developed formalism to calculate the fine
structure of two electrons localized either in a single QD or in
a lateral double QD. In what follows we consider triplet states
which are described by antisymmetric combination of single-
electron in-plane envelopes ψ1(ρ1), ψ2(ρ2):

�(ρ1,ρ2) = N [ψ1(ρ1)ψ2(ρ2)− ψ1(ρ2)ψ2(ρ1)], (12)

where N is the normalization constant. The singlet–triplet
splitting caused by the Coulomb exchange interaction is 2Ue,
where

Ue = 2N 2e2

�

∫
dρ1dρ2

|ρ1 − ρ2|
ψ1(ρ1)ψ2(ρ1)ψ2(ρ2)ψ1(ρ2).

(13)
It is assumed to exceed by far the fine structure splittings of the
triplet states.

In the absence of the spin–orbit interaction the triplet state
equation (12) is threefold-spin-degenerate with respect to the
z component of the total electron spin: mz = 0, ±1. In the
QD systems described by the C2v point symmetry group with
the main in-plane axes x ′ ‖ [11̄0], y ′ ‖ [110] and the axis
z′ ‖ [001], the effective Hamiltonian acting in the basis of
the three states |mz〉 which describes their fine structure can
be represented via the operators of the total momentum 1, Ŝi

(i = x ′, y ′, z′) as

Ĥ = AŜ2
x′ + BŜ2

y′ − (A + B)Ŝ2
z′ , (14)

by means of two independent constants A and B. The term
proportional to Ŝ2

z is added in order to eliminate the irrelevant
total energy shift of the triplet.

There are three non-degenerate eigenstates of the
Hamiltonian (14) [7]: one state with energy E0 = A + B
characterized by the total spin projection on the growth axis
being 0 and ‘linearly polarized’ combinations:

|x ′〉 = 1√
2
(|+1〉+|−1〉), |y ′〉 = − i√

2
(|+1〉−|−1〉),

(15)
with energies Ex′ = −B and Ey′ = −A, respectively, similar
to those of heavy-hole exciton in an anisotropic quantum
disc [2, 18, 19]. The values of the constants A and B depend on
the wavefunction shapes and on the spin splitting parameters ξ ,
ξ̃ and β .

3.1. Single quantum dot

First we consider a single parabolic QD. As an example we
take the lowest excited S P triplet state where one electron
occupies the ground state (S-shell orbital) and the other one
occupies the lowest excited (P-shell) state:

ψ1(ρ) = 1√
2πa2

e−ρ2/4a2
, ψ2(ρ) = x ′

a
ψ1(ρ). (16)

Here a is an effective disc radius. It is assumed that the QD
is slightly elongated along the x ′ axis so that the Px′ orbital
(given by equations (16)) is lower in energy as compared

4
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Figure 2. Schematic illustration of the two-electron energy level fine
structure in an anisotropic quantum disc. Here |0〉, |x ′〉 and |y′〉
denote spin states, equation (15). The singlet state lies above the
triplet states and is not affected by the spin–orbit interaction. Panel
(a): negligible structural inversion asymmetry (δ⊥ < 0) and panel (b)
comparable bulk and structural inversion asymmetry (δ⊥ > 0).
Splittings are not shown to scale.

with the Py′ orbital with the wavefunction (y ′/a)ψ1(ρ). The
deformation of the wavefunctions due to the ellipticity of the
QD is neglected [7]. The singlet–triplet splitting in such a QD
equals 2Ue = √

πe2/(4�a).
The constants A and B in equation (14) can be

conveniently expressed in terms of new parameters δ⊥ and δzz

describing the splittings between the linearly polarized states
and between the state with mz = 0 and one of the linearly
polarized states, namely |y ′〉, respectively, as is shown in
figure 2:

A = − 2
3 (δ⊥ + δzz), B = 2

3 (2δ⊥ − δzz). (17)

The calculation of matrix elements, equation (9), with the
antisymmetrized wavefunction (12) neglecting heavy–light-
hole splitting shows that the direct contribution vanishes
(because M (2) is represented as a product of operators acting
on each electron state) and the exchange contribution yields

δzz = −ξ 2

√
πe2

32�a5
,

δ⊥ = −ξ 2 e2

�d

[
3

8a4
+ π9/2β2

2d3a3
− 128αβ

15da4

]
.

(18)

There are three contributions to δ⊥: the first one calculated
in [7] is not related with the lack of an inversion center,
the second one results from the bulk inversion asymmetry
and the third one is a result of an interplay between the
bulk and structural inversion asymmetry. Two last terms
in equations (18) are zero if bulk inversion asymmetry is
disregarded (β = 0), moreover, the third contribution to δ⊥
vanishes at α = 0, i.e. if the heteropotential has an inversion
center.

It follows from equations (17) and (18) that the spin
degeneracy of the triplet two-electron states is fully lifted in
anisotropic QDs by the combination of the exchange and spin–
orbit interactions (spin–orbit exchange). In perfectly isotropic
QDs the situation may be different [7].

It is worth noting that, depending on the values of α and
β , the sign of δ⊥ can be arbitrary. The negative sign of δ⊥

corresponds to the small structural inversion asymmetry, while
the positive sign of δ⊥ corresponds to the comparable bulk and
structural inversion asymmetries, αβ > 0. In this case the
last term in equations (18) becomes dominant. It results in a
different order of levels: if δ⊥ < 0 when the state with mz = 0
lies between the states |x ′〉 and |y ′〉 figure 2(a), otherwise it lies
above the doublet |x ′〉 and |y ′〉 figure 2(b). Since δzz < 0 the
state |0〉 always lies above the state |y ′〉.

The allowance for the heavy–light-hole splitting results
in the replacement of ξ by ξ + ξ̃ in the expression for δzz ,
equations (18). If Ẽg < Eg, i.e. the valence band top is
determined by the heavy holes, see figure 1(b), then |δzz|
increases.

3.2. Lateral double quantum dot

The fine structure of triplet two-electron states in lateral double
QDs is qualitatively similar to the case of SP electron states in
a single QD considered above.

We assume that the electron states in each dot can be
described by Gaussian wavefunctions [20]:

ψ1(ρ) = 1√
2πa

e−ρ2/4a2
, ψ2(ρ) = 1√

2πa
e−(ρ−L)2/4a2

,

(19)
where L is a vector connecting QD centers. The overlap
between these states ∼ exp (−L2/4a2) is supposed to be
small so that the triplet state can be written in the form
of equation (12). The normalization constant N =
[2 − 2 exp (−L2/4a2)]−1/2 ≈ 1/

√
2. The Coulomb

exchange interaction constant Ue given by equation (13) is
equal approximately to2 0.89 exp (−L2/4a2)e2/(�a) and is
assumed to exceed the fine structure splittings of the triplet
state.

In what follows we disregard the bulk inversion
asymmetry β = 0 and the splitting of the heavy- and light-
hole bands. It is convenient to express the constants A and B
in the effective Hamiltonian (14) via the parameters δ⊥ and δzz

by means of equations (17). The calculation shows that3

δzz = −0.014
e2ξ 2

a5�

L2

a2
e− L2

4a2 , δ⊥ = − 3e2ξ 2

32da4�

L2

a2
e− L2

4a2 .

(20)
The qualitative level arrangement is similar to the one shown
for a single QD in figure 2(a). The allowance for the bulk
and structural inversion asymmetries may transform the level
arrangement to the one shown in figure 2(b). In the latter case
the splittings and eigenspin states are strongly sensitive to the
orientation of the vector L relative to the in-plane axes.

It is instructive to analyze an interplay of the electron–
electron spin–orbit exchange interaction and the spin splitting
of the conduction band caused by bulk and structural inversion
asymmetry. In the relevant case where the interdot distance
L exceeds by far the QD size a the spin–orbit splitting of the
conduction band can be eliminated in the lowest order by a
unitary transformation which takes into account the rotation of
electron spin during the electron tunneling [21, 22]. Hence, the

2 It was obtained by fitting the results of numerical integration.
3 The value of δzz was obtained by fitting the results of numerical integration.

5
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Figure 3. Hot trion fine structure. (a) Dominant electron–hole
exchange interaction: |±1/2〉, |±3/2〉, and |±5/2〉 denote the total
spin (electron and hole) projection on the growth axis. (b) Dominant
electron–electron spin–orbit exchange interaction: |x ′〉, |y′〉 and |0〉
denote the two-electron spin states, equation (15), |±3/2〉h is the
hole spin state.

exchange interaction between the electrons expressed in terms
of the transformed spins has the same form as without the spin–
orbit splitting, equation (14). Therefore, the level splittings are
the same as without the conduction band spin splitting, but the
eigenstates are different because they correspond to the rotated
spins. The higher-order effects of the conduction band spin–
orbit splitting may give rise to an additional contribution to
δzz [22].

Finally, we compare the ratio of the spin splitting |δzz | to
the exchange Coulomb interaction energy for the S P state in a
single QD and for the double QD:

∣∣∣∣δzz

Ue

∣∣∣∣ ≈ ξ 2

a4
×

⎧⎨
⎩

0.25, single dot,

0.016
L2

a2
, double dot.

Therefore the relative role of the spin–orbit effects in double
dots is higher: although the absolute values of the fine structure
constants decrease with an increase of the dot separation L,
the ratio of the spin splittings of the triplet and the exchange
interaction constant increases.

It is worth noting that the values of the splittings depend
strongly on the QD geometry and its asymmetry. In the QD
ensembles with the relatively high inhomogeneous broadening
the fine structure of two-electron states can manifest itself as a
dephasing of the total spin of interacting electrons, similarly to
the exciton spin dephasing [2].

4. Emission spectra

In this section we calculate the emission spectra of a single
QD in two particular situations where the fine structure of
triplet two-electron states is manifested: first, we consider the
emission of a ‘hot’ (excited) trion and, second, we consider the
emission of a doubly charged exciton.

4.1. Hot trion

The hot trion is formed from a hole and two electrons: one
in the ground and the second one in the excited state in the
QD. In what follows we assume that two electrons occupy
S and P orbitals and constitute the orbital state described
by the antisymmetric wavefunction, equation (12). Although
this state is excited, its relaxation to the ground, singlet trion
state where two electrons occupy the same orbital can be

strongly suppressed [5]. A fine structure of the excited trion
is determined by an interplay of the electron–electron spin–
orbit exchange interaction and the electron–hole exchange
interaction.

The short-range part of the exchange interaction Hamilto-
nian between the hole and two electrons in the SP excited state
is given by

Ĥeh = 2
3δeh[σ̂ (1)z + σ̂ (2)z ] Ĵz, (21)

where Ĵz is the heavy-hole angular momentum projection
operator and δeh (δeh < 0, as a rule) is a constant determining
the splittings between the states with different z components of
the total spin (electron and hole), see figure 3(a). Hence, if the
electron–electron spin–orbit exchange interaction is negligible,
the fine structure of a triplet hot trion consists of three twofold-
degenerate sublevels split by |2δeh|. Two of these sublevels
|±1/2〉 and |±3/2〉 are optically active. This fine structure for
a hot trion is widely accepted in the literature [3–5] and indeed
holds if |δeh| � |δ⊥| in equation (17).

In the opposite limiting case, |δeh| � |δ⊥|, the fine
structure of an excited trion state is different, see figure 3(b).
There are three sublevels, each of which is twofold-degenerate
with respect to the hole spin projection. All these three states
are optically active. At an arbitrary relation between δeh and
δ⊥ there are also three doubly degenerate levels which are, in
general, active.

The emission spectra are calculated by using the Fermi
golden rule. We assume the constant wave non-resonant
excitation of the system well above the hot trion resonance
energy which results in a formation of the steady-state
distribution of the trion levels, n(Ei ), where Ei are the energies
of the hot trion sublevels. The optical transitions to the final
states of the system, which are the single-electron states, f =
±1/2, are described by the matrix elements M±

f i corresponding
to the emission of a photon with a given circular polarization.
As a result the emission spectra in a σ+ or σ− circular
polarization are given by the following expression:

I±(ω) ∝
∑

i j

|M±
f i |2n(Ei )�(Ei − E f + h̄ω). (22)

Here E f are the final state energies and�(E) is the broadened
δ function describing energy conservation in the process of
photoemission. Equation (22) is valid provided the initial and
final states are well defined, so that the splitting between these
states exceeds their broadening; otherwise one has to use a
more elaborate approach [23]. In what follows it is assumed
that n(Ei) = const, i.e. all the initial sublevels are equally
populated.

Hot trion emission spectra calculated in the case of
relatively weak and relatively strong electron–electron spin–
orbit exchange interactions are presented in figure 4, panels
(a) and (b), respectively. Different curves which are vertically
shifted for clarity correspond to different values of the
magnetic field applied along the growth axis. We take into
account only the Zeeman effect of the magnetic field. The
electron and hole effective g factors which determine the
energies of the spin-split states as ±geμB B/2 and ±3ghμB B/2
(where μB is the Bohr magnetron and B is the magnetic field
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Figure 4. Emission spectra of a hot trion. Different lines (offset along the vertical axis for clarity) correspond to different values of an external
magnetic field applied along the z axis. Red/solid curve corresponds to the emission in σ+ polarization, blue/dotted curve corresponds to the
emission in σ− polarization. Electron and hole effective g factors are ge > 0, 3gh = −0.42ge. Panel (a): relatively small electron–electron
spin–orbit exchange interaction, δzz = 0.1δeh, δ⊥ = 3δzz , δeh < 0 and |δeh| is used as a unit of energy. The energy is referred from the position
of the state with the total spin z component being ±3/2 calculated neglecting electron–electron spin–orbit coupling. Panel (b): relatively large
electron–electron spin–orbit exchange interaction, δ⊥ = 3δzz , δzz < 0, δeh = 0.1δzz and |δzz | are used as a unit of energy. The energy is
referred from the center of a two-electron triplet states calculated neglecting electron–hole exchange interaction. The lines are Lorentzian
broadened,�(ω) = π−1�/(ω2 + �2) in equation (22), with the width � = 0.05|δzz |.

z component) are chosen to have different signs, ge > 0,
gh < 0 which corresponds to CdSe/ZnSe/ZnMnSe QDs being
studied in [24]. Other parameters are presented in the caption
to figure 4.

In the case of a weak electron–electron spin–orbit
exchange interaction, figure 4(a), two doublets are clearly seen
which correspond to the states |±1/2〉 and |±3/2〉. In B = 0
the emission from the ‘dark’ states |±5/2〉 cannot be seen from
the figure because the bright state admixture due to electron–
electron spin–orbit exchange is small. With an increase of
the magnetic field an anticrossing is clearly visible, which is
evidence of the electron–electron spin–orbit interaction which
intermixes dark |5/2〉 and bright |−1/2〉 states when they
become resonant in a certain magnetic field. The observation
of such an anticrossing may allow one to measure the electron–
electron spin–orbit interaction constant δ⊥.

The emission spectra are completely rearranged in the case
of dominant electron–electron spin–orbit exchange interaction,
|δ⊥| � |δeh|, figure 4(b). In this case all the states are
optically active: in zero magnetic field three lines are seen,
corresponding to the eigenstates shown in figure 3(b). In a
magnetic field applied along the growth direction six emission
lines with different intensities are visible.

4.2. Doubly charged exciton

Here we consider the emission spectra of a doubly charged
exciton, X2−, which is formed of three electrons and a hole.
Two electrons occupy the ground S-shell state in a QD being
in the spin singlet, and the third one occupies an excited P-
orbital state. The hole occupies the ground state and radiatively
recombines with one of the S-shell electrons, leaving the two
remaining electrons in the S P-orbital state.

Figure 5. Energy levels and optical transitions in the X2− complex.
States |Fz | = 1, |Fz | = 2 are the spin states of X2−, while states
denoted as SP singlet and triplet are the two-electron final states.
Long dashed and short dashed vertical arrows denote the optical
transitions from |Fz | = 1 and |Fz | = 2 states, respectively. Panel (a):
negligible structural inversion asymmetry (δ⊥ < 0), panel (b)
comparable bulk and structural inversion asymmetry (δ⊥ > 0).
Splittings are not shown to scale.

The initial X2− state can be conveniently characterized
by the z component of the total spin of electrons and holes,

7
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Figure 6. Emission spectra of the X2− complex. Different lines (offset along the vertical axis for clarity) correspond to different values of an
external magnetic field applied along the z axis. Red/solid curve corresponds to the emission in σ+ polarization, blue/dotted curve
corresponds to the emission in σ− polarization. Electron and hole effective g factors are ge > 0 and 3gh = −0.42ge. The energy unit is |δ̃eh|.
Panel (a) corresponds to the two-electron level structure shown in figures 2(a) and 5(a) where the structural inversion asymmetry is negligible:
δzz = −0.2|δ̃eh| < 0, δ⊥ = 3δzz < 0. Panel (b) corresponds to the two-electron level structure shown in figures 2(b), 5(b) (comparable bulk
and structural inversion asymmetries): δzz = −0.2|δ̃eh| < 0, δ⊥ = −3δzz > 0. The lines are Lorentzian broadened,�(ω) = π−1�/(ω2 + �2)

in equation (22), with the width � = 0.05|δ̃eh|. Transitions to singlet two-electron states are neglected.

Fz , which takes the following values ±1 and ±2, since two
electrons form a spin singlet. The electron hole short-range
exchange interaction splits the states with |Fz | = 1 and 2 by
the value δ̃eh similar to the splitting of the ground excitonic
states into bright and dark doublets. In this case, however, both
|Fz | = 1 and 2 states are optically active and the schemes
of transitions for different level arrangements are depicted in
figure 5.

The emission spectra shown in figure 6 are calculated for
different values of the magnetic field applied along the growth
axis and for two possible arrangements of two-electron triplet
sublevels by using equation (22). In this case the initial, i ,
and final states, f , are those of the X2− complex and of two
electrons, respectively, see figure 5. Panel (a) of figure 6
shows the case of absent structural inversion asymmetry so
that the triplet sublevels order is given in figure 2(a). Panel
(b) corresponds to the case of substantial bulk and structural
inversion asymmetries where the triplet sublevel order is given
in figure 2(b). In our calculations the transitions to the singlet
two-electron states are disregarded since they are shifted in
energy. We also neglect the splittings of initial states due to
low symmetry of the QD.

At a zero magnetic field three lines are clearly seen which
correspond to the transitions from the |Fz | = 2 states to the
states |x ′〉, |y ′〉 and to the transition from the |Fz | = 1 states
to the state |0〉 (figure 5). In weak magnetic fields the peak
positions are governed by an interplay of the Zeeman splittings
and the spin–orbit exchange interaction. In a relatively strong
magnetic field four lines are visible. Their order and splittings
are determined by the g factors of carriers and by the order
of two-electron final states. The emission spectra shown in
figure 6 are similar to those measured in [25]. The detailed
comparison of the experimental results and theory will be
reported elsewhere.

5. Conclusions

To summarize, a theory of spin–orbit-induced terms in
electron–electron interactions for the carriers confined in
[001]-grown zinc blende lattice-based quantum wells and
quantum dots is developed. Terms originating from the bulk
inversion asymmetry and structural inversion asymmetry are
derived.

The theory is applied to calculate the fine structure of
two-electron states confined in a single or double QD. In
anisotropic systems the spin–orbit electron–electron exchange
interaction is shown to lift completely the spin degeneracy of
two-electron triplet states. The analytical results are obtained
for the parabolic single QDs and lateral double QDs.

We have addressed theoretically the emission spectra of
two specific systems where the spin–orbit electron–electron
exchange interaction may play an important role: hot trion and
X2− complex. In the former case, the two electrons in a triplet
state and a hole form an initial state of the complex. In the
latter case, the two-electron state is a final one in the process of
X2− recombination. The emission spectra of these systems in
the magnetic field applied along the growth axis are calculated.
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